Frank-Starling Law of the Heart

• Relationship between EDV, contraction strength, and SV.
• Intrinsic mechanism:
 – Varying degree of stretching of myocardium by EDV.
 – As EDV increases:
 • Myocardium is increasingly stretched.
 • Contracts more forcefully.
 – As the ventricles fill, the myocardium stretches; so that the actin filaments overlap with the myosin at the edges of the A band.

Frank-Starling Law of the Heart

• Allows more force to develop.
• Explains how the heart can adjust to rise in TPR.

Extrinsic Control of Contractility

• Contractility:
 – Strength of contraction at any given fiber length.
• Depends upon sympathoadrenal system:
 – NE and Epi produce an increase in contractile strength.
 • + inotropic effect:
 – More Ca²⁺ available to sarcomeres.
Negative Feedback Control of Blood Pressure by Baroreceptor Reflex

Negative Feedback Control of Blood Volume and Osmolality
Regulation of Blood Volume by the Kidney

- Formation of urine begins by filtration of plasma through glomerular capillary pores.
- Volume of urine excreted can be varied by changes in reabsorption of filtrate.
 - Adjusted according to needs of body by action of hormones.

Regulation by ADH

- Released by posterior pituitary when osmoreceptors detect an increase in plasma osmolality.
- Dehydration or excess salt intake:
 - Produces sensation of thirst.
 - Stimulates H₂O reabsorption from urine.

Regulation by Aldosterone

- Steroid hormone secreted by adrenal cortex.
- Mechanism to maintain blood volume and pressure through absorption and retention of Na⁺ and Cl⁻:
 - Stimulates reabsorption of NaCl.
 - Indirectly increases H₂O reabsorption.
 - Does not dilute osmolality.
- Release stimulated:
 - During salt deprivation.
 - Reduced blood volume and pressure.
Renin-Angiotension-Aldosterone System

- When blood pressure and flow are reduced in renal artery, juxtaglomerular apparatus secretes renin.
- Renin converts angiotensinogen to angiotensin I.
- Angiotensin I is converted to angiotensin II by ACE.
- Angiotensin II:
 - Powerful vasoconstrictor.
 - Stimulates production of aldosterone.
 - Stimulates thirst.

Atrial Natriuretic Peptide (ANP)

- Produced by the atria of the heart.
- Stretch of atria stimulates production of ANP.
 - Antagonistic to aldosterone and angiotensin II.
 - Promotes Na⁺ and H₂O excretion in the urine by the kidney.
 - Promotes vasodilation.
Hypertension (HTN)

- Blood pressure in excess of normal range for age and gender.
 - > 140/90 mm Hg.
- Primary or essential hypertension:
 - Is the result of a complex or poorly understood process.
- Secondary hypertension:
 - Is a result of a known disease process.

Dangers of Hypertension

- Silent killer:
 - Patients are asymptomatic until substantial vascular damage occurs.
 - Atherosclerosis.
- Increases afterload.
 - Increases workload of the heart.
 - Congestive heart failure.
- Damage cerebral blood vessels.
 - Cerebral vascular accident (stroke).

Treatment of Hypertension

- Modification of lifestyle:
 - Cessation of smoking.
 - Moderation in alcohol intake.
 - Weight reduction.
 - Programmed exercise.
 - Reduction in Na⁺ intake.
 - Diet high in K⁺.
Treatment of Hypertension (continued)

• Medications:
 – Diuretics:
 • Increase urine volume.
 – Beta-blockers:
 • Decrease HR.
 – Calcium antagonists:
 • Block Ca²⁺ channels.
 – ACE inhibitors:
 • Inhibit conversion to angiotensin II.
 – Angiotension II-receptor antagonists:
 • Block receptors.

Circulatory Shock

• Hypovolemic shock:
 – Circulatory shock that is due to low blood volume.
 – Decreased CO and blood pressure.
 • Bleeding, dehydration, and burns.
• Compensations:
 – Baroreceptor reflex:
 • Tachycardia.
 • Vasconstriction to GI, skin, kidneys, and muscles.
 – Kidneys stimulate production of renin-angiotensin-aldosterone system.
 • Vasconstriction.
 • Increase in ADH.

Other Causes of Circulatory Shock

• Anaphylactic shock:
 – Severe allergic reaction.
 – Widespread release of histamine.
 – Vasodilation.
• Neurogenic shock:
 – Rapid fall in BP.
 • Sympathetic tone is decreased.
• Cardiogenic shock:
 – Cardiac failure.
 • CO inadequate to maintain perfusion.
Congestive Heart Failure

- CO is insufficient to maintain the blood flow required by the body.
 - Increased venous volume and pressure.
- Caused by:
 - MI (most common cause).
 - Congenital defects.
 - Hypertension.
 - Aortic valve stenosis.
 - Disturbances in electrolyte concentrations.
 - K^+ and Ca^{++}.
- Compensations similar to those of hypovolemic shock.
- Treated with medications:
 - Digitalis, vasodilators, and diuretics.